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Abstract. Probabilistic properties of spiking time-series obtained in vivo from singular neurons belonging
to Red Nucleus of brain are analyzed for two groups of rats: genetically defined rat model of depression
(Flinders Sensitive Rat Line – FSL) and a control (healthy) group. The FSL group shows a distribution
of interspike intervals with a much longer tail than that found for normal rats. The former distribution
(for the FSL group) indicates a power-law with exponent α = −1± 0.1. A simple thermodynamic (noise)
model is elaborated to explain obtained results.

PACS. 87.19.La Neuroscience – 87.18.Sn Neural networks – 87.17.-d Cellular structure and processes –
87.10.+e General theory and mathematical aspects

1 Introduction

In recent years nonlinear properties of neuron firing are
studied very intensively, especially in relation to noise
effects (see, for instance, Refs. [1–10] and references
therein). These investigations (both theoretical and ex-
perimental) were devoted mainly to enhancement of weak
subthreshold signals by addition of noise due to the coop-
erative effect of noise on signal because of the nonlinear
properties of the neuron. There are two main ways for ex-
perimental studies in this area: a) investigation of current-
voltage characteristic curve, and b) extracting the infor-
mation from time-series generated by neuron firing. In the
present paper we are concentrated on the last method.

All types of information, which is received by sensory
system, are encoded by nerve cells into sequences of pulses
of similar shape (spikes) before they are transmitted to the
brain. Brain neurons use such sequences as main instru-
ment for intercells connection. The information is reflected
in the time intervals between successive firings (interspike
intervals of the action potential train or ISIs). There need
be no loss of information in principle when converting from
dynamical amplitude information to spike trains [11] and
the irregular spike sequences is the foundation of neural in-
formation processing. Although understanding of the ori-
gin of interspike intervals irregularity has important im-
plications for elucidating the temporal components of the
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neuronal code and for treatment of such mental disorders
as depression and schizophrenia, the problem is still very
far from its solution (see, for instance, Ref. [9] and refer-
ences therein).

In experiments performed in vitro, cortical slices, for
instance, showed regular firing patterns when stimulated
by a constant current indicating that the irregular firing of
neurons in the intact brain is due to strong temporal fluc-
tuations of synaptic inputs. Therefore, electrophysiologi-
cal experiments in vivo should be performed for achieving
the above-mentioned purpose.

We study so-called Red Nucleus. The Red Nucleus is
a prominent structure within the rostral midbrain. Very
little is known about the functions of the Red Nucleus
in humans. Inputs to the Red Nucleus arise from motor
areas of the brain and in particular the deep cerebellar
nuclei (via superior cerebellar peduncle; crossed projec-
tion) and the motor cortex (corticorubral; ipsilateral pro-
jection). Therefore, the Red Nucleus is supposed to be
relatively “simple” from neural point of view [12]. The
most important efferent projection of the Red Nucleus is
to the contralateral spinal cord, i.e. the rubrospinal pro-
jection. The rubrospinal tract is thought to be involved in
the control of both the flexor and extensor muscles, but
even this is debated. The rubrospinal projection is also, of
course, influenced by the motor information coming out
of the cerebellum, as well as from motor cortex.

Our electrophysiological experiment in vivo was per-
formed with two groups of rates. One group was
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genetically defined rat model of depression (Flinders Sen-
sitive Rat Line – FSL) and another was a control group.
All rats were anaesthetized and mounted in a stereotaxic
frame. Technical details of the electrophysiological mea-
surements will be published elsewhere. Procedures involv-
ing animals and their care were conducted in conformity
with the international laws and policies. All efforts were
made to minimize animal suffering and to reduce the num-
ber of animal used.

It is known that humans with deep depression have
intrinsic locomotor’s problems. Therefore, investigation of
Red Nucleus for genetically defined rat model of depres-
sion can be useful for understanding the mental disorder
origin.

2 Data

Figure 1 – top, shows an example of 1000 subsequent in-
terspike intervals obtained for a FSL’s neuron (τ is length
of interspike interval, in seconds) and Figure 1 – bottom,
shows analogous set obtained for a neuron of a rat belong-
ing to control group. We are investigating “slow” firing
neurons, taking into account that we will compare (in our
further investigations) these results with analogous obser-
vations for dopaminergic neurons from ventral tegmental
area (VTA) of brain, which is believed to be responsible
for “pleasure” reaction. The last neurons are known to be
“slow”-firing ones.

Figure 2 shows probability density functions, P (τ), cal-
culated for four neurons belonging to two FSL rats. Fig-
ure 3 shows probability density functions calculated for
four neurons belonging to two rats from control (healthy)
group. We choose log-log scales in these figures. One can
see that the distribution falls off much faster for the nor-
mal rats than for the FSL ones. This is the main result of
our measurements.

To understand reasons for the differences between the
probability density functions produced by FSL and by
healthy neurons we need in comparison with the data ob-
tained by other authors and in some speculations.

The lognormal distribution is commonly used to fit
spike train data for healthy neurons (see, for instance,
Ref. [13] where data were obtained from cat cerebral cor-
tex and other preparations, and Ref. [14] where data were
obtained from retinal ganglion cells), though without the-
oretical explanation. Therefore, first of all we try to ap-
proximate the data represented in Figure 3 (for healthy
neurons) by the lognormal distribution (solid curves in
Fig. 3). Though it seems like a decent fit to a piece of a
lognormal curve, it should be noted, that all the data are
on one side of what would be the peak in the curve (well to
the right of it except for one or two points). Therefore we
cannot claim with definition that the data confirm the log-
normal distribution for the healthy neurons. In any case,
these data do not contradict to the data obtained by the
other authors, which claim lognormal distribution as the
most appropriate one in this case [13,14] (see also below).
It should be also noted that data shown in Figures 3c
and d could be also fitted by a more simple power-law

Fig. 1. Examples of 1000 subsequent interspike intervals ob-
tained for a FSL’s neuron (top) and for a neuron belonging
to a rat from control group (bottom). τ is length of interspike
interval, in seconds.

Fig. 2. Logarithm of probability density functions, P (τ ), cal-
culated for four neurons belonging to two FSL rats against
logarithm of τ . Straight lines (best fit) are drawn to indicate
power-law distribution (with exponent equal to −1± 0.1).
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Fig. 3. Logarithm of probability density functions, P (τ ), cal-
culated for four neurons belonging to two rats from control
group against logarithm of τ . Solid curves (best fit) are drawn
to indicate lognormal distribution.

with an exponent close to −2. For a more quantitative
comparison of these two types of approximation we made
a regression analysis. Standard parameters of this analysis
are following: R[2] = 0.67, R = −0.82 and SE = 0.67 for
power-law approximation in Figure 3c, while lognormal
approximation gives R[2] = 0.91, R = 0.96 and SE = 0.36
(close results are obtained for the data represented in
Fig. 3d). Though the regression parameters for the log-
normal approximation are considerably better than those
obtained for power-law approximation, the power-law re-
gression parameters are also not so bad.

For the FSL neurons this situation seems to be more
clear. We use log-log scales in Figure 2, therefore the
straight lines (best fit) drawn in this figure indicate power-
law distribution

P (τ) ∼ τα. (1)

Exponent α extracted from these graphs is equal to
−1± 0.1. Since reference [15] the power-law distributions
considered as indication of a self-organized critical pro-
cess – SOC (for ideal SOC distribution of inter-burst in-
tervals is exponential [16,17]).

3 Model

In models similar to that suggested reference [15] a ther-
mal excitation process leading to crossover of a threshold

(and, consequently, to jumps from one metastable state
to another) plays a crucial role. Arrhenius relationship
between typical crossing time, τ , and height of the thresh-
old, E: [18]

τ ' τ0 eE/kT (2)

is used in the models (where T is some temperature-like
parameter and k is the Boltzmann constant). If the thresh-
old overcoming occurs in a nonlinear multistable system
due to a noise, then we have a particular form of this rela-
tionship (Kramers relationship) with T = D/k, where D
is noise strength [18]. Relationship (2) (in Arrhenius or in
Kramers formulation) is independent on other SOC prop-
erties and can be considered for much more wide class of
phenomena and, in particular, for neurons firing.

Let us recall some basic electrochemical properties of
neuron [19–22]. Nerve cells are surrounded by a membrane
that allows some ions to pass through while it blocks the
passage of other ions. When a neuron is not sending a sig-
nal it is said to be “at rest”. At rest there are relatively
more sodium ions onside the neuron and more potassium
ions inside that neuron. The resting membrane electro-
chemical potential (the voltage difference across the neu-
ral membrane) of a neuron is about−70 mV. If some event
(a stimulus) causes the resting potential to move toward
0 mV and the depolarization reaches about −55 mV (a
“normal” threshold) a neuron will fire an action poten-
tial. The action potential is an explosive release of charge
between neuron and its surroundings that is created by a
depolarizing current. If the neuron does not reach this crit-
ical threshold level, then no action potential will fire. Also,
when the threshold level is reached, an action potential of
a fixed size will always fire (for any given neuron the size of
the action potential is always the same). The mechanism
of depolarization can be described as following. A stimulus
first results in the opening of sodium channels in the neu-
ron membrane (membrane’s channels are transmembrane
proteins that open in response to changes in membrane
potential allowing a particular ionic species to cross the
membrane). Since there are a lot more (positive) sodium
ions on the outside, and the inside of the neuron is nega-
tive relative to the outside, sodium ions rush into the neu-
ron. Therefore the neuron becomes more positive and be-
comes depolarized. It takes longer to potassium channels
to open. When they do open potassium rushes out of the
cell, reversing the depolarization (action potential peaks
at around 55 mV = Nerst equilibrium potential for Na+).
Also about this time, sodium channels start to close. This
causes the membrane potential to go back toward the rest
value −70 mV (a repolarization). It takes about 1.5 ms
for a neuron to return to its resting potential. Even after
the membrane is repolarised, some Na+ channels remain
inactivated, such that a second activation potential re-
quires a higher stimulus than the previous threshold volt-
age. Depending on different types of voltage-dependent
ion channels, different types of action potentials are gener-
ated in different cells types and the qualitative estimates of
the potentials and time periods can be varied. Moreover,
there is a distribution of threshold values over different
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channels in the same membrane due to fluctuations in the
local environment. If the threshold value is passed gating
occurs and the channel opens with high probability. Prob-
abilistic nature of neuronal threshold was experimentally
proved rather long time ago (see, for instance, Ref. [24],
where this phenomenon was related to the channel noise
and Refs. [25–27] for recent achivments). In particular, it
is shown in a recent paper reference [23] that a normal-
like (Gaussian) distribution of the threshold values gives a
fairly good fit of an available data on the current-voltage
curve for ions channels (Boltzmann distribution is also
discussed in this context).

Now we can return to the idea related to Arrhenius
(Kramers) relationship (2). Membrane potential may over-
come its threshold value due to a deterministic stimulus
or due to stochastic oscillations, e.g. noise (though, mod-
ulated by a weak external stimulus). In the last case the
overcoming of threshold have a probabilistic nature and
typical crossing time can be established using Arrhenius
(Kramers) equation (2). There are two main sources of
electrical noise in neurons: noise from synaptic processes
(see, for instance, Refs. [28–30]) and references therein)
and channel noise (see for a recent review [25]). Neu-
rons effectively utilize noise for detection of weak sig-
nals [1–10]. This situation may be most relevant to anaes-
thetized brain. If the thresholds are distributed according
to some probability distribution Pth(E), then using (2)
one obtains distribution of τ in a spiking train

P (τ) = Pth(E)
dE
dτ
∼ Pth(log τ)

τ
· (3)

The above mentioned normal-like distribution of the
thresholds Pth after substitution into (3) results in
lognormal-like distribution of interspike intervals τ

P (τ) ∼ τ−1 exp−
[

(log τ/τc)2

2σ2

]
(4)

where τc and σ are some constants. This result is consis-
tent both with our data for control group (Fig. 3) and with
results of measurements presented in references [13,14].

We have already mentioned that Gaussian (normal)
distribution of the thresholds was considered in refer-
ence [23] as an alternative to Boltzmann distribution. Us-
ing (3) it is easy to show that Boltzmann distribution
of the thresholds leads to a power law distribution of in-
terspike intervals P (τ) ∼ τα with α ∼ −2 (cf. Fig. 3c
and d). We will discuss a possible competition between
Boltzmann and Gaussian distributions of the thresholds
in more details elsewhere in relation to neurons belonging
to another area of brain (VTA, or “pleasure” zone) where
this competition has principal character.

Now we can find distribution of the thresholds, which
may result in the observed (Fig. 2) power-law distri-
bution of interspike intervals τ . One can see that sub-
stitution of an uniform-like distribution of thresholds:
Pth(E) ' const. into (3), results in the observed in our
experiment with FSL rats probability distribution of in-
terspike intervals

P (τ) ∼ τ−1. (5)

4 Discussion

Normal-like distribution of thresholds extracted from the
data for the healthy neurons in references [13,14] (which is
consistent with our data for control group) can be a broad
one. However, one can speak about fluctuations in a vicin-
ity of a certain threshold (normal fluctuations) in this case.
For the uniform-like distribution of thresholds extracted
from the data for FSL rats one cannot find a certain es-
pecial value of threshold, that should results in a loss of
intelligence of corresponding neurons at their communi-
cation with other ones. This intelligence, then, could be
partially restored only for sufficiently long trains of spikes,
for which an average value of threshold may appear.

Given the central role that electrical excitability plays
in neurons system function, it is not surprising that muta-
tions of voltage-gated ion channels in ion membrane alter
neuronal function. For example: a) Generalized epilepsy
with febrile seizures is associated in some cases with a mu-
tation of β1 subunit of the Na+ channel. This mutation
may promote epilepsy by slowing the inactivation process
in neuronal Na+ channels (see above), leaving the brain
hyper-excitable.

b) Some forms of episodic ataxia, a condition of trig-
gered events of imbalance and uncoordinated movements,
has been tied to a number of mutations of Kν1.1 channel,
which gives rise to an inactivating K+ conductance and
increases the threshold of activation.

In the present paper we discuss a possible mutation
of probabilistic properties of the thresholds in Red Nu-
cleus neurons of FSL rats, which may be partially respon-
sible for their ill behavior. This discussion is based on
calculations of probability distributions of the in vivo ob-
tained spiking time-series and some general thermody-
namic ideas. It should be noted, however, that the power-
law fit with exponent −1 for the FSL rats is based only on
just a bit more than one decade, so one has to be careful
about the thermodynamic interpretation of the data. An-
other significant point which should be taken into account
in further investigations is role of synaptic input, i.e. sig-
nal instead of noise. Our very simple model ignores these
signals. It is interesting that interaction between noise and
the informative signals may play crucial role in the neu-
rons’ communications due to stochastic resonance mech-
anism (see, for instance [31,32] and references therein).
We hope to investigate this problem using our data in the
future. What we can say definitely comparing Figures 1
and 2, that the distribution falls off much faster for the
normal rats than for the FSL ones, and this observation
can be used to distinguish between healthy and “depres-
sive” neurons.
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